# reactor1.m (Source)

```function reactor1(g)
% REACTOR1 Zero-dimensional kinetics: adiabatic, constant pressure.
%
%    >>>>  For a simpler way to carry out a constant-pressure simulation,
%    see example reactor3.m <<<<<
%
%    This example illustrates how to use class 'Reactor' for
%    zero-dimensional kinetics simulations. Here the parameters are
%    set so that the reactor is adiabatic and very close to constant
%    pressure.
%
% Keywords: combustion, reactor network, ignition delay, plotting

help reactor1

if nargin == 1
gas = g;
else
gas = Solution('h2o2.yaml', 'gas', 'None');
end

P = oneatm;
% set the initial conditions
set(gas,'T',1001.0,'P',P,'X','H2:2,O2:1,N2:4');

% create a reactor, and insert the gas
r = IdealGasReactor(gas);

% create a reservoir to represent the environment
a = Solution('air.yaml','air','None');
set(a,'P',P)
env = Reservoir(a);

% Define a wall between the reactor and the environment and
% make it flexible, so that the pressure in the reactor is held
% at the environment pressure.
w = Wall;
install(w,r,env);

% set expansion parameter. dV/dt = KA(P_1 - P_2)
setExpansionRateCoeff(w, 1.0e6);

% set wall area
setArea(w, 1.0);

% create a reactor network and insert the reactor:
network = ReactorNet({r});

nSteps = 100;
tim(nSteps) = 0;
temp(nSteps) = 0;
x(nSteps,3) = 0;
t = 0.0;
dt = 1.0e-5;
t0 = cputime;
for n = 1:nSteps
t = t + dt;
tim(n) = time(network);
temp(n) = temperature(r);
x(n,1:3) = moleFraction(gas,{'OH','H','H2'});
end
disp(['CPU time = ' num2str(cputime - t0)]);

clf;
subplot(2,2,1);
plot(tim,temp);
xlabel('Time (s)');
ylabel('Temperature (K)');
subplot(2,2,2)
plot(tim,x(:,1));
xlabel('Time (s)');
ylabel('OH Mole Fraction (K)');
subplot(2,2,3)
plot(tim,x(:,2));
xlabel('Time (s)');
ylabel('H Mole Fraction (K)');
subplot(2,2,4)
plot(tim,x(:,3));
xlabel('Time (s)');
ylabel('H2 Mole Fraction (K)');
clear all
cleanup
```